Understanding COVID-19 Vaccines

*Updated March 2nd, 2021

Vaccines can prevent serious illness, or prevent serious complications from infection, and are an important part of family and public health across the globe.

Currently, three COVID-19 vaccines, Pfizer-BioNTech, Moderna, and Janssen/Johnson & Johnson are approved for Emergency Use in the United States. Additionally, Novavax and Oxford-AstraZeneca are currently testing their vaccines in Phase 3 clinical trials. There are many other COVID-19 vaccines being tested or are already approved for use in other countries. For current, up-to-date information on the status of COVID-19 vaccines across the world, you can visit The New York Times Coronavirus Vaccine Tracker <u>here</u>.

The 3 Types of COVID-19 Vaccines in the United States are:

- 1. Viral Vector: Johnson & Johnson and Oxford-AstraZeneca
- 2. Nucleic Acid (mRNA): Pfizer-BioNTech and Moderna
- 3. Protein-based: Novavax

Types of Vaccines	Viral Vector	Nucleic Acid (mRNA)	Protein-based
How it Works	This approach takes a modified virus and uses it to deliver viral genes to build immunity	This vaccine uses RNA molecules to teach the immune system to target key viral proteins	This vaccine uses a piece of a virus' surface to focus your immune system on a single target
Existing Examples	• Ebola • Veterinary Medicine	• COVID-19	PertussisHuman Papillomavirus (HPV)
Sponsor of the COVID-19 vaccine being tested in USA	Johnson & JohnsonOxford-AstraZeneca	Pfizer-BioNTechModerna	• Novavax

Viral Vector

Viral vector vaccines insert genetic material from the COVID-19 virus into a weakened known virus (such as adenovirus). The weakened virus is used as a vector (or carrier) and is not able to cause disease. Once the vaccine is injected, the COVID-19 genetic material within the vector gives cells instructions to make B-Cells and T-Cells that will remember how to fight the virus if ever infected. The Johnson & Johnson COVID-19 vaccine is a viral vector vaccine.

Nucleic Acid (mRNA)

Nucleic Acid vaccines contain mRNA directions that give your body's cells instructions on how to make a unique Coronavirus protein. When the mRNA vaccine is injected, your body makes copies of the COVID-19 spike protein, prompting an immune response. Once your body makes copies of the protein, the mRNA material is destroyed, and if infected with the COVID-19 virus, your body will be able to fight the virus far better and faster than without the vaccination. Interesting to know, mRNA vaccine technology is not new; scientists have studied mRNA vaccines for decades. Also, mRNA vaccines do not use live virus, so the COVID-19 virus would not enter your body by injecting the vaccine. The Pfizer-BioNTech and Moderna vaccines are mRNA vaccines.

Protein-based

Protein-based vaccines include viral protein subunits. To work, these vaccines use the COVID-19 spike protein or a receptor protein of the COVID-19 virus and an ingredient (an adjuvant) to create a stronger immune response. When you receive this type of vaccine, your immune system recognizes that the protein does not belong in your body and will begin making T-Cells and antibodies to fight it, allowing your immune system to recognize any future infection. The Novavax vaccine is a protein-based vaccine.

*This information was last reviewed on March 2nd, 2021 by the NephCure COVID-19 Medical Advisory Committee. NephCure will provide updated information as it becomes available.

References:

- 1. https://www.nature.com/articles/d41586-020-01221-y
- 2. https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html
- 3. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/
- 4. https://www.sandiegouniontribune.com/news/science/story/2020-06-06/race-for-vaccine
- 5. https://www.nature.com/articles/nrd.2017.243
- 6. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/mrna.html
- 7. https://www.cnn.com/2021/02/24/health/johnson-vaccine-fda-analysis/index.html